Analysis of Filtering Solutions based on the 'FastSLAM' Framework

نویسندگان

  • Wu Zhou
  • Chunxia Zhao
چکیده

The joint state is factored into a path component and a map component in the FastSLAM framework, which reduces the computational complexity greatly. Among all the filtering solutions based on the FastSLAM framework, the particle filtering solution and the kalman filtering solution are the two most important series. Analysis of the two filtering SLAM solutions is made in this paper. And the conclusions are as follows: Firstly, the kalman filtering SLAM solution is superior to the particle filtering SLAM solution in computational complexity. Secondly, the two filtering SLAM solutions perform similarly well in estimation accuracy. In addition, the kalman filtering SLAM solution and the particle filtering SLAM solution are evaluated with the ‘Victoria Park Dataset’, which is a bench mark dataset in the SLAM community. The experimental results show that the association between observations and estimated features is vital to the accuracy and convergence of the FastSLAM framework based solutions. Thus, special concern should be paid to reliability and stability of the data association process in SLAM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FastSLAM Algorithm Based on the Unscented Filtering with Adaptive Selective Resampling

A FastSLAM approach to the SLAM problem is considered in this paper. An improvement to the classical FastSLAM algorithm has been obtained by replacing the Extended Kalman Filters used in the prediction step and in the feature update with Unscented Kalman Filters and by introducing an adaptive selective resampling. The simulations confirm the effectiveness of the proposed modifications.

متن کامل

A Marginalized Particle Filtering Framework for Simultaneous Localization and Mapping

This contribution aims at unifying two recent trends in applied particle filtering (PF). The first trend is the major impact in simultaneous localization and mapping (SLAM) applications, utilizing the FastSLAM algorithm. The second one is the implications of the marginalized particle filter (MPF) or the Rao-Blackwellized particle filter in positioning and tracking applications. An algorithm is ...

متن کامل

An Improved FastSLAM Framework Based on Particle Swarm Optimization and Unscented Particle Filter ⋆

FastSLAM is a framework which solves the problem of simultaneous localization and mapping using a Rao-Blackwellized particle filter. Conventional FastSLAM is known to degenerate over time in terms of accuracy due to the particle depletion in resampling phase. To solve this problem, a FastSLAM method based on particle swarm optimization and unscented particle filter is proposed. The number of pa...

متن کامل

FISST-SLAM: Finite Set Statistical Approach to Simultaneous Localization and Mapping

The solution to the problem of mapping an environment and at the same time using this map to localize (the simultaneous localization and mapping, SLAM, problem) is a key prerequisite in the synthesis of truly autonomous vehicles. By far the most common formulation of the SLAM problem is founded on a vector based stochastic framework, where the sensor models and the vehicle models are represente...

متن کامل

A Neuro-Fuzzy Multi Swarm FastSLAM Framework

FastSLAM is a framework for simultaneous localization using a Rao-Blackwellized particle filter. In FastSLAM, particle filter is used for the mobile robot pose (position and orientation) estimation, and an Extended Kalman Filter (EKF) is used for the feature location’s estimation. However, FastSLAM degenerates over time. This degeneracy is due to the fact that a particle set estimating the pose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012